Obróbka cieplna to metoda, która ma na celu podniesienie właściwości mechanicznych materiałów, w szczególności ich odporności na ścieranie. Narzędzia, które są poddane na intensywne obciążenia i działanie agresywnych warunków, takich jak tarcie, wymagają specjalistycznej obróbki, aby zwiększyć ich trwałość. Właśnie tutaj obróbka cieplna odgrywa kluczową rolę, pozwalając na istotne poprawienie odporności na ścieranie, co przekłada się na dłuższą trwałość narzędzi.
Mechanizmy zużycia narzędzi
Aby zrozumieć, jak obróbka cieplna podnosi odporność narzędzi na zużycie, warto przyjrzeć się mechanizmom, które prowadzą do ich uszkodzenia.
Ścieranie – proces, w którym elementy narzędzia ulegają wytarciu wskutek kontaktu z obrabianym materiałem.
Zmęczenie materiału – powstawanie mikropęknięć w strukturze pod wpływem cyklicznych sił.
Adhezja – przywieranie cząsteczek materiału obrabianego do powierzchni narzędzia, co może prowadzić do jego degradacji.
Korozja – degradacja materiału pod wpływem wpływów atmosferycznych, takich jak wilgoć, zanieczyszczenia czy wysokie ciepło.
Obróbka cieplna umożliwia modyfikację struktury metalu, co pomaga zredukować te zjawiska i wzmocnić odporność narzędzi na zużycie.
Metody obróbki cieplnej w celu zwiększenia odporności na zużycie
Obróbka cieplna obejmuje różnorodne metody, które mają na celu wzmocnienie właściwości narzędzi w kontekście odporności na zużycie.
1. Hartowanie
Hartowanie to proces, w którym materiał jest podgrzewany do wysokiej gorączki, a następnie gwałtownie schładzany w medium chłodzącym, takim jak olej. Efektem jest uzyskanie struktury martenzytycznej, która zapewnia wyjątkową twardość i odporność na ścieranie. Narzędzia poddane hartowaniu są bardziej wytrzymałe na intensywne siły.
2. Odpuszczanie
Odpuszczanie jest procesem, który polega na podgrzewaniu stali do określonej temperatury, a następnie powolnym jej schładzaniu. Celem jest zmniejszanie kruchości materiału i poprawianie jego plastyczności. Narzędzia, które są jednocześnie twarde i elastyczne, lepiej znoszą obciążenia mechaniczne, co wydłuża ich trwałość.
3. Azotowanie
Azotowanie to proces cieplno-chemiczna, która polega na wprowadzaniu azotu do warstwy powierzchniowej metalu. Dzięki temu powstaje twarda warstwa azotków, która wyraźnie poprawia odporność na ścieranie oraz korozjogenne działanie środowiska. Narzędzia poddane azotowaniu charakteryzują się doskonałą odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur.
4. Nawęglanie
Nawęglanie to proces, który polega na zasileniu powierzchni stali w węgiel, co zwiększa jej twardość. Proces ten pozostawia rdzeń materiału sprężysty, a warstwę wierzchnią wzmacnia węglem. Narzędzia nawęglane są odporne na zużycie i regularne obciążenia.
5. Powłoki ochronne
W celu zwiększenia odporności na zużycie, stosuje się także powłoki ochronne, takie jak chromowanie, niklowanie czy powłoki ceramiczne. Dzięki tym powłokom, narzędzia stają się bardziej odporne na uszkodzenia oraz agresywny wpływ środowiska.
Przykłady zastosowania obróbki cieplnej w narzędziach
1. Narzędzia skrawające
Wiertła, frezy i noże tokarskie to narzędzia, które są szczególnie narażone na intensywne ścieranie. Stosowanie hartowania oraz azotowania pozwala na wzmocnienie ich twardości oraz odporności na wysokie temperatury, co pozwala na ich dłuższe i skuteczniejsze użytkowanie.
2. Narzędzia tłoczące
Matrzyce, stemple i inne narzędzia używane w procesach tłoczenia są wyeksponowane na duże obciążenia i ścieranie. Azotowanie oraz nawęglanie tych narzędzi pozwala na zabezpieczenie ich odporności na ścieranie.
3. Narzędzia ręczne
Młotki, klucze, przecinaki i inne narzędzia ręczne, które wymagają wysokiej odporności, są przechodzą hartowanie, co zapewnia im długotrwałą trwałość i odporność na uszkodzenia.
Obróbka cieplna to nieodzowny element w produkcji narzędzi, który pozwala na zwiększenie właściwości materiałów i wytrzymałości na zużycie. Dzięki odpowiednio dobranym procesom, takim jak hartowanie, odpuszczanie, azotowanie czy nawęglanie, możliwe jest znaczne zwiększenie żywotności narzędzi, co przekłada się na ich przydatność oraz opłacalność w długoterminowej eksploatacji.